GCE

Physics B

H557/02: Scientific literacy in physics
Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ES	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
\boldsymbol{A}	Omission mark
SF	Error in number of significant figures
\boldsymbol{S}	Correct response
\boldsymbol{S}	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
reject	alternative and acceptable answers for the same marking point
not	Answers which are not worthy of credit
Ignore	Answers which are not worthy of credit
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument

Note about significant figures:

If the data given in a question is to 2 sf , then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper
Any exception to this rule will be mentioned in the Guidance.

Section A

Question			Answer	Marks	Guidance
1	(a)	i	$\begin{aligned} & v=\left(0.20 \mathrm{~kg}^{\left.\times 1.8 \mathrm{~m} \mathrm{~s}^{-1}\right) / 0.50 \mathrm{~kg} \checkmark}\right. \\ & =0.72 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{aligned}$	2	Correct bald answer gains both marks Accept $0.7 \mathrm{~ms}^{-1}$
	(a)	ii	$\begin{aligned} & \text { initial k.e. }=0.324 \mathrm{~J} \checkmark=0.32(\mathrm{~J}) \\ & \text { final k.e. }=0.1296 \mathrm{~J} \checkmark=0.13(\mathrm{~J}) \end{aligned}$	2	ecf from (a)(i) on final k.e.(0.36 J from $\mathrm{v}=1.2 \mathrm{~m} / \mathrm{s}$ from (i)) accept 0.216 J for final $\mathrm{k} . \mathrm{e}$. if this follows from mass and velocity error from (a) (i)
	(a)	iii	$\begin{aligned} & \text { Change of momentum of } 0.2 \mathrm{~kg} \text { mass }^{=0.20 \mathrm{~kg} \times(0.72-1.8) \mathrm{m} \mathrm{~s}^{-1}=-0.216 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}} \text { = } \\ & \text { Change of momentum of } 0.3 \mathrm{~kg} \text { mass }^{=0.30 \mathrm{~kg} \times(0.72-0) \mathrm{m} \mathrm{~s}^{-1}=(+) 0.216 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}} \\ & \text { Force on } 0.2{\mathrm{~kg} \text { mass }=-0.216 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} / \Delta t}_{\text {Force on } 0.3 \mathrm{~kg} \text { mass }=(+) 0.216 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} / \Delta t} \end{aligned}$	3	Ecf from (a) (i) (Commonly giving $0.12 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ for one momentum and $0.36 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ for the other) Must show working and one value of $\Delta \mathrm{p}$ is positive and the other is negative Accept use of $0.7 \mathrm{~ms}^{-1}$ Last marking point is independent and is for recognition that the two changes occur over (the same) time Δt.
	(b)		Clear attempt at finding whole area under the line \checkmark Impulse evaluated using F Δ t leading to impulse of 2.0×10^{4} N s to $2.3 \times 10^{4} \mathrm{Ns} \checkmark$ Answer in the range (-) $14.3 \mathrm{~m} \mathrm{~s}^{-1}$ to $16.4 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$	3	Ecf from impulse for third mark
			Total	10	

Question			Answer	Marks	Guidance
2	(a)		$\mathrm{p} . \mathrm{d}=6.1 \mathrm{~V} \times(4.7 \mathrm{k} \Omega / 6.9 \mathrm{k} \Omega)=4.155 \mathrm{~V}(\sim 4.2 \mathrm{~V})$	1	Must have own value, e.g. 4.16V Penalise rounding error
	(b)		total resistance of $4.7 \mathrm{k} \Omega$ resistor and voltmeter R_{T} : $\begin{aligned} & 3.2 \mathrm{~V}=6.1 \mathrm{~V} \times\left(R_{\mathrm{T}} /\left(R_{\mathrm{T}}+2.2 \mathrm{k} \Omega\right) \checkmark\right. \\ & \Rightarrow R_{\mathrm{T}}=2.4 \mathrm{k} \Omega \checkmark \\ & 2.4^{-1}=4.7^{-1}+R_{\text {voltmeter }}{ }^{-1} \\ & R_{\text {voltmeter }}=4.9 \mathrm{k} \Omega^{\checkmark} \end{aligned}$	3	Or via: $2.9 \mathrm{~V}=6.1 \mathrm{~V}\left(2.2 \mathrm{k} \Omega /\left(R_{\mathrm{T}}+2.2 \mathrm{k} \Omega\right)\right.$ Or via: $\mathrm{I}=2.9 \mathrm{~V} / 2.2 \mathrm{k} \Omega=1.32 \mathrm{~mA}$ $\& R_{\mathrm{T}}=3.2 \mathrm{~V} / 1.32 \mathrm{~mA}=2.4 \mathrm{k} \Omega$ Reverse method ok If $R_{v}=5 k \Omega$ total parallel resistance $=2.42 k \Omega \checkmark$ $\begin{aligned} & V_{v}=6.1 \times \frac{\left(2.42 \times 10^{3}\right)}{2.42 \times 10^{3}+2.2 \times 10^{3}} \downarrow \\ & =3.197 \vee \vee(3.2) \end{aligned}$ Using different number of sig figs for R_{T} gives answers in the range 4.9-5.03 $\mathrm{k} \Omega$
	(c)	i	$I=0.5 / 4.9 \times 10^{-3}=1.0 \times 10^{-4} \mathrm{~A} \checkmark$	1	Same answer using $5 \mathrm{k} \Omega$ Ecf from (b)
	(c)	ii	$\begin{aligned} & \text { From } \varepsilon=V+\mathrm{I} r \\ & =0.93 \mathrm{~V}+\left(0.93 \mathrm{~V} / 1 \times 10^{6} \Omega\right) r=0.5 \mathrm{~V}+\left(0.5 \mathrm{~V} / 4.9 \times 10^{3} \Omega\right) r \\ & 0.93 \mathrm{~V}+\left(9.3 \times 10^{-7} \mathrm{~A}\right) \times r=0.5 \mathrm{~V}+\left(1.0 \times 10^{-4} \mathrm{~A}\right) \times r \checkmark \\ & r=(0.93 \mathrm{~V}-0.5 \mathrm{~V}) /\left(1.0 \times 10^{-4} \mathrm{~A}-9.3 \times 10^{-7} \mathrm{~A}\right)=4.3 \mathrm{k} \Omega \checkmark \end{aligned}$	3	Accept: Assuming $\varepsilon=0.93 \vee \checkmark$ (explicit) $\begin{aligned} & 0.50 \mathrm{~V}=0.93 \mathrm{~V}-1 \times 10^{-4} \mathrm{~A} \times r \checkmark \\ & r=4.3 \mathrm{k} \Omega \checkmark \end{aligned}$ Correct bald answer gains two marks Expect values around 4300Ω - sensitive to sfs in values
			Total	8	

Question			Answer	Marks	Guidance
3	(c)	I	Exponential decrease where rate of decrease of quantity is proportional to the value of the quantity. AW \checkmark Any three from: - Induced e.m.f. proportional to rate of change of flux - Magnitude of rate of change of flux linked to rate of rotation - (therefore) magnitude of (induced) currents/ field linked to rate of rotation - (therefore) magnitude of (braking) force linked to rate of rotation - As the effect of friction has not been removed, exponential behaviour might not be observed	4	Accept constant ratios idea Accept any link between magnitude of current and speed
	(c)	ii	Test for constant ratio property on two data pairs \checkmark Test for constant ratio property on third data pair \checkmark Conclusion linked to test on three pairs \checkmark OR Taking two values of In (speed) and finding time interval Taking another two values of \ln (speed) and finding time interval \checkmark $\Delta \ln ($ speed $) / \Delta t$ compared \checkmark	3	Accept other valid method If the method is not valid then zero marks e.g. finding and comparing gradients. $\text { If } v=v_{0} \mathrm{e}^{-\mathrm{kt}}, \Delta \ln (\text { speed }) / \Delta t=k$
			Total .	15	

Section B

Question			Answer	Marks	Guidance
4	(a)	i	$\begin{aligned} E_{\mathrm{k}} & =e V=1.60 \times 10^{-19} \mathrm{C} \times 4.3 \times 10^{3} \mathrm{~V}\left(=6.88 \times 10^{-16} \mathrm{~J}\right)^{\checkmark} \\ V & =\sqrt{ }\left(2 E_{\mathrm{k}} / \mathrm{m}\right) \\ & =\sqrt{ }\left(2 \times 6.88 \times 10^{-16} \mathrm{~J} / 9.11 \times 10^{-31} \mathrm{~kg}\right)=3.9 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{aligned}$	2	Correct bald answer gains both marks
		ii	rest mass of electron $=512 \mathrm{keV} / 8.20 \times 10^{-14} \mathrm{~J} \checkmark$ Gamma factor $=(4.3 \mathrm{keV}+512 \mathrm{keV}) / 512 \mathrm{keV}=1.008(4)$ Not much bigger than 1, therefore reasonable to ignore.	3	Accept calculation of gamma from $\frac{1}{\sqrt{1-\frac{\left(3.9 \times 10^{7}\right)^{2}}{\left(3 \times 10^{8}\right)^{2}}}} \checkmark \quad(=1.0086)=1.009$ Allow ecf of speed from (a)i If simply stated that relativistic effects can be ignored because velocity is about 0.1 c , one mark.
		iii	$\begin{aligned} & \lambda=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} /\left(9.11 \times 10^{-31} \mathrm{~kg} \times 3.9 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & =1.87 \times 10^{-11} \mathrm{~m} \checkmark \end{aligned}$	1	Allow ecf from a)i
	(b)		(higher energy electrons have) shorter wavelength \checkmark Angle to first order maximum decreases as wavelength decreases \checkmark More energetic electrons produce more photons when they strike the screen.	3	Stating or implying that the electron energy is given by $\mathrm{E}=h c / \lambda$ negates first mark Accept 'shorter wavelengths diffract less' or reference to equation Accept 'smaller rings giving more concentrated release of photons/ more intense light'/ electrons strike smaller area of screen

Question		Answer	Marks	Guidance
4	(c)	Level 3 (5-6 marks) There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Marshals argument in a clear manner. Clearly explains evidence for wave-like properties, evidence for particle-like properties and explains phasor model in context. Level 2 (3-4 marks) There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Gives a clear explanation of two of the three strands to the question but may ignore one strand. Or, gives a less detailed explanation of all strands but misses out vital links in the explanations. Level 1 (1-2 marks) There is an attempt at a logical structure with a line of reasoning. The information is for the most part relevant. Explains one strand clearly and completely, or two strands in a less complete manner. 0 marks No response or no response worthy of credit	6	Indicative scientific points may include: Wave-like behaviour - Diffraction usually (classically) considered a wave property - Explained by waves superposing - Producing areas/places of maximum and minimum amplitude - Dependent on the phase relationship of the superposing waves Particle-like behaviour: - Electrons producing (discrete) flashes of light is evidence of particle like behaviour - Flash suggests discrete/point-like interactions with the screen - rather than the energy of each electron spread across the screen in the manner expected of waves - electrons have been accelerated (without changing medium) Phasor model - phasors described as rotating arrows (representing phase and amplitude) accept rotating vectors - electron (or electron phasor) explores all possible paths - between (e.g.) graphite layer and screen - resultant phasor is the sum of all the phasor amplitudes (added tip to tail) - Probability of electron detected at a given position can be calculated from the square of the resultant phasor
		total	15	

Question			Answer	Marks	Guidance
6	(a)		Uniformly/equally spaced (field) lines \checkmark	1	
	(b)	i	Forces are equal (\& opposite) \checkmark AW $q v B_{s}=q E_{s} \checkmark$	2	Can be stated algebraically Accept e for q
	(b)	ii	$\begin{aligned} & \text { Units of } E_{\mathrm{s}} / B_{\mathrm{s}}: \mathrm{N} \mathrm{C}^{-1} / \mathrm{N} \mathrm{~A}^{-1} \mathrm{~m}^{-1} \\ & =\mathrm{C}^{-1} / \mathrm{C}^{-1} \mathrm{~s} \mathrm{~m}^{-1} \checkmark\left(=\mathrm{m} \mathrm{~s}^{-1}\right) \end{aligned}$	2	Accept alternative units for $E_{\mathrm{s}} / B_{\mathrm{s}}$ Alternative routes possible but derivation of units must be clear.
	(b)	iii	Particle is deflected in the vertical plane \checkmark Particle will follow a curved path \checkmark Particle accelerates/experiences resultant force (in a vertical plane).	3	Accept moves up or down Allow parabolic or circular motion for second marking point.
	(c)	i	$\begin{aligned} & F=1.6 \times 10^{-19} \mathrm{C} \times 5.2 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \times 0.64 \mathrm{~T} \\ & =5.32 \times 10^{-13} \mathrm{~N}\left(\sim 5.3 \times 10^{-13} \mathrm{~N}\right) \end{aligned}$	1	Working must be shown. Accept worked answer to 2 s.f.
		ii	$\begin{aligned} & F=m v^{2} / r \\ & r=1.673 \times 10^{-27} \mathrm{~kg} \times\left(5.2 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} /\left(5.3 \times 10^{-13} \mathrm{~N}\right) \checkmark \\ & =0.085 \mathrm{~m} \checkmark \end{aligned}$	2	Do not accept 0.08 m (rounding error)
		iii	$\begin{aligned} & (F \text { is same, so }) \frac{\mathrm{m}_{\mathrm{C}(14)} v^{2}}{r_{\mathrm{C}(14)}}=\frac{\mathrm{m}_{\mathrm{C}(12)} v^{2}}{r_{\mathrm{C}(12)}} \checkmark \\ & \frac{r_{\mathrm{C}(14)}}{r_{\mathrm{C}(12)}}=\frac{\mathrm{m}_{\mathrm{C}(14)}}{\mathrm{m}_{\mathrm{C}(12)}} \checkmark \\ & m_{(\mathrm{C} 14)}=14 \& m_{(\mathrm{C} 12)}=12, \text { so }=\frac{\mathrm{m}_{\mathrm{C}(14)}}{\mathrm{m}_{\mathrm{C}(12)}}=1.1666 \ldots=1.2 \checkmark \end{aligned}$	3	Accept 1.17, not 1.16 Answers of 7/6 award two marks maximum.
			total	14	

Section C

Question			Answer	Marks	Guidance
7			$\begin{aligned} & \text { resolution }=70 \mathrm{~km} /(832 \text { pixels } \times 5 / 7)^{\checkmark} \\ & =0.12 \checkmark \end{aligned}$	2	range 0.10 to $0.13 \mathrm{~km} \mathrm{pixel}^{-1}$
			total	2	
8	a	i	$\begin{aligned} & \mathrm{r}=\sqrt{ }\left(6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 6.4 \times 10^{23} \mathrm{~kg} / 3.7 \mathrm{~N} \mathrm{~kg}^{-1}\right)^{\checkmark} \\ & =3.404 \times 10^{6} \mathrm{~m}\left(\approx 3.4 \times 10^{6} \mathrm{~m}\right) \vee \end{aligned}$	2	Must show own value and working $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ gives $3.397 \times 10^{6} \mathrm{~m}$
	b*		Level 3 (5-6 marks) There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Marshals argument in a clear manner. Calculations correct, clear, giving units and correct number of s.f. Explanation of reasoning about energy needed to escape clear and using correct technical vocabulary. Description and explanation of potentials in the Solar System unambiguous. Level 2 (3-4 marks) There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Calculations correct and sufficiently clearly structured to follow argument. Reasoning behind calculations attempted, but may be incomplete or superficial. Some attempt made to explain the energy needed to reach Earth or escape the Solar System. Level 1 (1-2 marks) There is an attempt at a logical structure with a line of reasoning. The information is for the most part relevant. Attempts calculation and reaches the expected answer but may not explain reasoning. Little or no comment on the energy required to reach Earth or leave the Solar System 0 marks No response or no response worthy of credit.	6	Indicative scientific points may include: Calculation: - $V_{\text {grav }}$ calculated as $-12.6 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$ - Clear link to energy required per kg to escape Mars $=(+) 12.6 \mathrm{~J} \mathrm{~kg}^{-1}$ - Energy to eject rock $=2.5 \times 10^{6} \mathrm{~J}$ - Explanation that work is required to move rock through Martian gravitational field or to lift it out of the potential well. Can be expressed algebraically. AW Explanation of gravitational potential in the Solar System. (answers are given here in terms of gravitational potential wells, accept other terminology) - Sun has its own gravitational field - Mars in the Sun's gravitational well - Rock has to 'climb out' of Mars's potential well AND that of the Sun, requiring more energy - Earth is deeper in the Sun's potential well than Mars - Earth has its own potential well - Rock leaving Mars can 'fall into' Earth's well - And is falling into the Sun's potential well. Accept calculations or estimates or diagrams

Question			Answer	Marks	Guidance
9			$\begin{aligned} & h=-(\ln 0.03 / 0.6) \times 1.4 \times 10^{-23} \times 210 / 7.3 \times 10^{-26} \times 3.7 \checkmark \\ & =3.26 \times 10^{4} \mathrm{~m} \checkmark \end{aligned}$ Comment: T may not be constant. \checkmark Lower T will give lower pressure (as e is raised to a bigger negative number) AW, ORA \checkmark OR Comment: g may not be constant \checkmark Lower g will give higher pressure (as e is raised to a smaller negative number) AW, ORA \checkmark	4	Using $k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ gives 32.1 km Accept atmosphere not all CO_{2} for 1 mark.
			total	4	
10	a		risk on Earth $=5 \% \mathrm{~Sv}^{-1} \times 3 \mathrm{a} \times 0.4 \times 10^{-3} \mathrm{~Sv} \mathrm{a}^{-1}=0.006 \% \checkmark$ Any two from: - Risk on Earth is about 1000 times smaller \checkmark - magnetic field shields Earth \checkmark - atmosphere interacts with cosmic rays, (absorbing, scattering) \checkmark	3	Accept considerably smaller
	b		Radiation damages (body/tissue) cells (and their DNA) \checkmark Suggestion for buildings (thick walls, underground etc.) linked with absorption/penetration of cosmic rays \checkmark	2	Accept ionisation Accept use of lead. Require suggestion and reasoning for mark
			total	5	
11	a		$\begin{aligned} & \text { centripetal force }=m v^{2} / r=m(2 \pi r / T)^{2} / r \\ & \left.=m\left(4 \pi^{2}\right) r^{2} / T^{2}\right) / r=m\left(4 \pi^{2}\right) r / T^{2} \\ & =(-) 1000 \mathrm{~kg} \times 4 \pi^{2} \times\left(2.27 \times 10^{11} \mathrm{~m}\right) /\left(5.94 \times 10^{7} \mathrm{~s}\right)^{2} \\ & =(-) 2.54 \mathrm{~N} \checkmark \end{aligned}$ Force from Sun calculated to (-) $2.60 \mathrm{~N} \checkmark$ Force from Mars calculated to $0.04 \mathrm{~N} \checkmark$ Net force $=(-) 2.56 \mathrm{~N}(\approx 2.54 \mathrm{~N}) \checkmark$	5	Ecf within question but working must be clear. N.B. Data are to 3 s.f. so datasheet value of $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ is appropriate 2.589 N to 3 d.p. 0.037 N to 3 d.p. 2.552 N to 3 d.p.
	b		Other (massive) bodies in the Solar System (distort gravitational field) \checkmark	1	Allow radiation pressure on shield Accept hit by asteroid/space debris Accept non-circular orbits
			total	6	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

